Transient swelling, acidification, and mitochondrial depolarization occurs in neurons but not astrocytes during spreading depression.
نویسندگان
چکیده
Cortical spreading depression (SD) is a propagating wave of neuronal and glial depolarization that manifests in several brain disorders. However, the relative contribution of neurons and astrocytes to SD genesis has remained controversial. This is in part due to a lack of utilizing sophisticated experimental methodologies simultaneously to quantify multiple cellular parameters. To address this, we used simultaneous two-photon imaging, intrinsic optical imaging, and electrophysiological recordings to ascertain the changes in cellular processes that are fundamental to both cell types including cell volume, pH, and metabolism during SD propagation. We found that SD was correlated in neurons with robust yet transient increased volume, intracellular acidification, and mitochondrial depolarization. Our data indicated that a propagating large conductance during SD generated neuronal depolarization, which led to both calcium influx triggering metabolic changes and H(+) entry. Notably, astrocytes did not exhibit changes in cell volume, pH, or mitochondrial membrane potentials associated with SD, but they did show alterations induced by changing external [K(+)]. This suggests that astrocytes are not the primary contributor to SD propagation but are instead activated passively by extracellular potassium accumulation. These data support the hypothesis that neurons are the crucial cell type contributing to the pathophysiological responses of SD.
منابع مشابه
Mitochondrial and intrinsic optical signals imaged during hypoxia and spreading depression in rat hippocampal slices.
During hypoxia in the CA1 region of the rat hippocampus, spreading-depression-like depolarization (hypoxic spreading depression or HSD) is accompanied by both a negative shift of the extracellular DC potential (DeltaV(o)), and a sharp decrease in light transmittance (intrinsic optical signal or IOS). To investigate alterations in mitochondrial function during HSD and normoxic spreading depressi...
متن کاملElectrophysiological characteristics of hippocampal CA1 neurons after spreading depression-triggered epileptic activity in brain slices
Introduction: A close link between spreading depression (SD) and several neurological diseases such as epilepsy could be demonstrated in many experimental studies. Epilepsy is among the most common brain disorders. Despite a large number of investigations, its mechanisms have not been yet well elucidated. Hippocampus is one of the important structures involved in seizures. The aim of this st...
متن کاملThe mitochondrial permeability transition: the brain's point of view.
The mitochondrial permeability transition (mPT) has been implicated in both central nervous system ischaemia/reperfusion injury and excitotoxic neuronal death. To characterize the mPT of brain mitochondria, fluorescent mitochondrial dyes were applied to cultured neurons and astrocytes and isolated brain mitochondria were prepared. In astrocytes, mPT induction was observed as calcium-induced mit...
متن کاملNeurobiology of Disease -Amyloid Peptides Induce Mitochondrial Dysfunction and Oxidative Stress in Astrocytes and Death of Neurons through Activation of NADPH Oxidase
-Amyloid ( A) peptide is strongly implicated in the neurodegeneration underlying Alzheimer’s disease, but the mechanisms of neurotoxicity remain controversial. This study establishes a central role for oxidative stress by the activation of NADPH oxidase in astrocytes as the cause of A-induced neuronal death. A causes a loss of mitochondrial potential in astrocytes but not in neurons. The mitoch...
متن کاملEffect of elevated K(+), hypotonic stress, and cortical spreading depression on astrocyte swelling in GFAP-deficient mice.
Glial fibrillary acidic protein (GFAP) is the main component of intermediate filaments in astrocytes. To assess its function in astrocyte swelling, we compared astrocyte membrane properties and swelling in spinal cord slices of 8- to 10-day-old wild-type control (GFAP(+/+)) and GFAP-knockout (GFAP(-/-)) mice. Membrane currents and K(+) accumulation around astrocytes after a depolarizing pulse w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cerebral cortex
دوره 20 11 شماره
صفحات -
تاریخ انتشار 2010